
AFRL-VS-TR-2003-1024 AFRL-VS-TR-
2003-1024

POWER-ADAPTIVE MICROARCHITECTURE AND
COMPILER DESIGN FOR MOBILE COMPUTING

Rajiv Gupta et al.

The University of Arizona
Department of Computer Sciences
Tucson, AZ 85721

January 2003

Final Report

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

AIR FORCE RESEARCH LABORATORY
Space Vehicles Directorate
3550 Aberdeen Ave SE
AIR FORCE MATERIEL COMMAND
KIRTLAND AIR FORCE BASE, NM 87117-5776

REPORT DOCUMENTATION PAGE Form Approved OMB No.
0704-0188

Public reporting burder for this collection of information is estibated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing
and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burder to Department of Defense, Washington
Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of
law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
28-01-2003

2. REPORT TYPE 3. DATES COVERED (FROM - TO)
xx-07-2000 to xx-11-2002

4. TITLE AND SUBTITLE
POWER-ADAPTIVE MICROARCHITECTURE AND COMPILER DESIGN FOR
MOBILE COMPUTING
Unclassified

5a. CONTRACT NUMBER
5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
5e. TASK NUMBER
5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME AND ADDRESS
The University of Arizona
Department of Computer Sciences
Tucson, AZ85721

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING/MONITORING AGENCY NAME AND ADDRESS
,

10. SPONSOR/MONITOR'S ACRONYM(S)
11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
APUBLIC RELEASE
,
13. SUPPLEMENTARY NOTES
14. ABSTRACT
refer to atch
15. SUBJECT TERMS
16. SECURITY CLASSIFICATION OF: 17. LIMITATION

OF ABSTRACT
Public Release

18.
NUMBER
OF PAGES
20

19. NAME OF RESPONSIBLE PERSON
Mosher, Jan
Janet.Mosher@kirtland.af.mil

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

19b. TELEPHONE NUMBER
International Area Code
Area Code Telephone Number
DSN

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39.18

AFRL-VS-TR-2003-1024

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data,
does not license the holder or any other person or corporation; or convey any rights or permission
to manufacture, use, or sell any patented invention that may relate to them.

This report has been reviewed by the Public Affairs Office and is releasable to the National
Technical Information Service (NTIS). At NTIS, it will be available to the general public,
including foreign nationals.

This material is based on research sponsored by the Air Force Research Laboratory under
agreement number F29601-00-1-0183. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright notation thereon.

If you change your address, wish to be removed from this mailing list, or your organization no
longer employs the addressee, please notify AFRL/VSSE, 3550 Aberdeen Ave SE, Kirtland AFB,
NM 87117-5776.

Do not return copies of this report unless contractual obligations or notice on a specific document
requires its return.

This report has been approved for publication.

i

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining
the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display
a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
28-01-2003

2. REPORT TYPE
Final Report

3. DATES COVERED (From - To)
 1 Jul 00 – 1 Nov 02

4. TITLE AND SUBTITLE
Power-Adaptive Microarchitecture and Compiler Design for Mobile
Computing

5a. CONTRACT NUMBER
F29601-00-1-0183

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Rajiv Gupta, Santosh Pande, Soner Onder

5d. PROJECT NUMBER
DARP
5e. TASK NUMBER
SE
5f. WORK UNIT NUMBER
BN

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
The University of Arizona Georgia Tech. University
Dept. of Computer Science Atlanta, GA 30332
Gould-Simpson Bldg., Rm. 746
Tucson, AZ 85721 Michigan Tech. University
 Houghton, MI 49931

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Air Force Research Laboratory
Space Vehicles Directorate
3550 Aberdeen Ave., SE 11. SPONSOR/MONITOR’S REPORT
Kirtland AFB, NM 87117-5776 NUMBER(S)

AFRL-VS-TR-2003-1024
12. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

13. SUPPLEMENTARY NOTES
The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the Air Force Research Laboratory or the U.S. Government.
14. ABSTRACT

This project considered various sources of power consumption in general purpose high-
performance and embedded processors and developed techniques for lowering the power
consumption without significant sacrifice in performance. We have designed low power data
caches and low power external data buses that can be used for both superscalar and embedded
processors. For superscalar processors we have designed low complexity memory disambiguation
mechanism, power efficient instruction issue mechanism, and load/store reuse techniques. For
embedded processors we have developed techniques that allow us to achieve performance while
operating on compacted code and data. The various techniques that were developed have been
implemented as part of gcc compiler and the FAST simulation system. Experimentation was
carried out to demonstrate the utility of the techniques.15. SUBJECT TERMS
Power efficient architectures, compiler techniques

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

18.
NUMBER OF
PAGES

19a. NAME OF RESPONSIBLE
PERSON
James Lykea. REPORT

Unclassified
b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified SAR 20

19b. TELEPHONE NUMBER (include area
code)

(505) 846-5812
Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

ii

iii

Table of Contents

Abstract...1

1. Introduction..1

2. Low Power Data Caches and Data Buses ..4

2.1 Frequent Value Locality...4

2.2 Frequent Value Data Cache...5

2.3 Frequent Value Encoding for Low Power Data Buses ...5

2.4 Data Compression Transformations for Dynamically Allocated Data Structures.................5

3. Superscalar Processors..6

3.1 Dynamic Instruction Issue Mechanism...6

3.2 Dynamic Memory Disambiguation...6

3.3 Load-Store Reuse..7

3.4 Functional Unit Management ...7

4. Embedded Processors ..7

4.1 Profile Guided Selection of ARM and Thumb Instructions..7

4.2 Enhancing the Performance of 16 Bit Thumb Code Through Instruction Coalescing.........8

4.3 Bit Section Instruction Set Extension of ARM ...9

4.4 Bitwidth Aware Global Register Allocation..9

4.5 Dual Memory Banks in Embedded Processors...9

5. Infrastructure Development ...10

6. Other Contributions...10

References ...11

iv

1

Abstract

This project considered various sources of power consumption in general purpose high-
performance and embedded processors and developed techniques for lowering the power
consumption without significant sacrifice in performance. The developed techniques can be
divided into the following three categories:

Low power data caches and data buses.
These techniques were developed techniques for lowering the power consumed by
on-chip memory and external data buses associated with the processors. They are useful for
both high-performance and embedded processors since in both types of processors on-chip
memory and external buses consume significant part of the total power. These techniques are
based upon compression/encoding of frequent values. We have also developed compiler support
for carrying out data compression for reducing power consumed by the memory subsystem.

Superscalar processors.
In context of high performance processors we have developed low complexity memory
disambiguation mechanism, power efficient dynamic instruction issue mechanism, and
load/store reuse techniques.

Embedded processors.
In context of embedded processors we developed techniques which allow us to achieve
performance while operating on compacted code and data. It is desirable to use compacted code
and data beacuse it greatly reduces the power consumed by memory.

The various techniques that were developed have been implemented as part of gcc compiler and
the FAST simulation system. Experimentation was carried to demonstrate the utility of the
techniques.

1. Introduction

Recently, power consumption has become one of the biggest challenges in high-performance
desktop systems. This is because the drive toward increasing levels of performance has pushed
clock frequencies higher and has increased the processor complexity. Both increases come at a
cost of high power consumption. The costs associated with packaging, cooling and power
delivery have thus jumped to the forefront in the microprocessor industry.

To get an idea of the trends in power consumption of today's processor consider the following
table taken from the power study on Alpha processors. The Alpha processor family is multi-
issue, out-of-order execution high performance processor. We can see clearly the drastic growth
of the power and its density as well. This increase would also negatively impact the processor
reliability if the power dissipation keeps increasing at this rate. Even though reducing the supply
voltage is well known as an efficient way of controlling power consumption, its benefits are more
than offset by the increased complexity and frequency. This calls for creative architecture
solutions that can focus on high level trade offs between power and performance.

2

 Alpha Model Power (W) Frequency(MHz) Die size(mm2) Voltage(V)
 21064 30 200 234 3.3
 21164 50 300 299 3.3
 21264 90 575 314 2.2
 21364 >100 >1000 340 1.5

Table 1: Power Trends for Compaq Alpha.

The need to limit the power consumption is also crucial for portable computer platforms such as
cellular phones, palm handhelds and pocket PCs because those devices are battery powered.
Given the type of applications being written for mobile devices, there is an increasing demand for
delivering high quality multimedia output. Since the advances in battery technology are limited,
designing low power processors that can operate with a light weight battery for long duration is
imperative. Table 2 shows the trends in power consumption for typical embedded processors:
ARM7 to ARM10. They are simpler designed in-order execution pipelined processors. We can
see from the table that the range of power consumption is only the order of MilliWatt. The reason
for this big difference is due to much simpler architecture design. Future embedded processors
will have more complex structure such as deeper pipeline length and branch prediction. The
designs will resemble high performance processors but under different constraints. Therefore,
limiting the power consumption is also becoming more and more important for embedded
processors.

 ARM Model Power(mW/MHz) Frequency(MHz) Die size(mm2) Voltage(V)
 ARM720T 0.2 <100 1.8 0.9
 ARM920T 0.35 <230 6.0 0.9
 ARM1020E 0.8 <375 6.9 0.9

Table 2: Power Trends for ARM Family (0.13 micron technology).

Let us look at the power distribution of the Alpha 21264 and ARM 920T. Figure 1 is taken from
the power study in Alpha processors and Figure 2 is taken from a tutorial on low-power
processor.

3

In the Alpha 21264, the EBox and IBox represent the integer and floating point execution
processor core. The summed power expenditure of those two is 47%, much higher than the ARM
processor core (25%). This is because the 21264 has complex four-issue out-of-order speculative
execution pipelines while the ARM 920T has only a single-issue in-order execution pipeline. The
more complex the design the higher power it consumes. The IMMU, DMMU, PATag RAM and
the CP15 in ARM 920T contribute in various memory requests and handlings, similar to the
function of the MBox of the 21264. The total power of those components is 12%, less than the
19% for MBox in 21264. One reason for that is the ARM uses the virtual address caches to
partially avoid the address translation. The BIU and SysCtl in ARM 920T is comparable to the
CBox of 21264. The former has total 11% of power consumption and the latter has 12%.

This project addressed the various sources of power consumption in high-performance and
embedded processors. The developed techniques can be divided into the following three
categories:

• Low power data caches and data buses. These techniques were developed techniques for
lowering the power consumed by on-chip memory and external data buses associated
with the processors. They are useful for both high-performance and embedded processors

4

since in both types of processors on-chip memory and external buses consume
significant part of the total power. These techniques are based upon
compression/encoding of frequent values. We have also developed compiler support for
carrying out data compression for reducing power consumed by the memory subsystem.

• Superscalar processors. In context of high performance processors we have developed
low complexity memory disambiguation mechanism, power efficient dynamic instruction
issue mechanism, and load/store reuse techniques.

• Embedded processors. In context of embedded processors we developed techniques
which allow us to achieve performance while operating on compacted code and data. It is
desirable to use compacted code and data beacuse it greatly reduces the power
consumed by memory.

2. Low Power Data Caches and Data Buses

2.1 Frequent Value Locality

By analyzing the behavior of a set of benchmarks, we have demonstrated that a small number of
distinct values tend to occur very frequently in memory. On an average, only eight of these
frequent values were found to occupy 48% of memory locations for the benchmarks studied. In
addition, we demonstrated that the identity of frequent values remains stable over the entire
execution of the program and these values are scattered fairly uniformly across the allocated
memory.

We have developed three different algorithms for finding frequent values and experimentally
demonstrated their effectiveness. Each of these algorithms is designed to suit a different
application scenario. We have considered algorithms for the following scenarios and
demonstrated their effectiveness.

1. Find Once for a Given Program. This method finds a fixed frequent value set through a
profiling run which is then used by the application in all later execution runs. This is a
purely software based approach. Thus once the values are known, they must be
communicated to any hardware based application either through compiler generated code
or operating system support. Moreover, if the frequent value set is sensitive to the
program input, this approach will cause loss in performance.

2. Find Once Per Run of the Program. This method finds a fixed frequent value set during
each execution run of the program. The set of values is found through limited online
profiling during the initial execution of the program after which the values are fixed and
profiling ceases. These values are then used by the application during for remainder of the
execution. In other words the fixed frequent value set is found during each execution and
therefore the frequent value set being sensitive to program input is not a problem for this
method. This approach uses specialized hardware for finding the values. Therefore no
compiler or operating support is required to communicate the values to the hardware.

5

3. Continuously Changing During Program Run. This method maintains a changing frequent
value set by carrying out continuous profiling of the program during each execution run.
Moreover profiling is carried out by specialized hardware. Under this method an
application can benefit from adaptation of the frequent value set during a given run.

Additional details of load-store reuse techniques can be found in [7,8].

2.2 Frequent Value Data Cache

Next we demonstrates how this frequent value phenomenon can be exploited in designing a
cache that trades off performance with energy efficiency. We propose the design of the Frequent
Value Cache (FVC) in which storing a frequent value requires few bits as they are stored in
encoded form while all other values are stored in unencoded form using 32 bits. The data array is
partitioned into two arrays such that if a frequent value is accessed only the first
data array is accessed. This approach greatly reduces the energy consumed by the data cache.
The reduction in energy is achieved at the cost of an additional cycle needed to access
nonfrequent values. Our results show: (a) the time spent on encoding and decoding of values
typically has little or no impact on the cache access time; (b) while the reduction in dynamic
energy consumed by a frequent value access ranges from 34% to 84%, the increase in the
dynamic energy consumed by a nonfrequent value access ranges from 0.0005% to 0.0678% for
a read and from 0.776% to 4.679% for a write; and (c) experiments with some of the SPEC95
benchmarks show that on an average a 64Kb/64-value FVC provides 28.8% reduction in L1
cache energy 3.38% increase in execution time delay, 26.1% reduction in energy-delay product
and 31.3% reduction in power dissipation over a conventional 64Kb cache. Several alternate low
power data cache designs and their evaluations can be found in [8,9,10].

2.3 Frequent Value Encoding for Low Power Data Buses

Since the I/O pins of a CPU are a significant source of energy consumption, work has been
done on developing encoding schemes for reducing switching activity on external buses. Modest
reductions in switching can be achieved for data and address busses using a number of general
purpose encoding schemes. However, by exploiting the characteristic of memory reference
locality, switching activity at address bus can be reduced by as much as 66%. Till now no
characteristic has been identified that can be used to achieve similar reductions in switching
activity on the data bus. We have discovered a characteristic of values transmitted over the data
bus according to which a small number of distinct values, called frequent values, account for
32% of transmissions over the external data bus. Exploiting this characteristic we have
developed an encoding scheme that we call the FV encoding scheme. To implement this
scheme we have also developed a technique for dynamically identifying the frequent values which
compares quite favorably with an optimal offline algorithm. Our experiments show that FV
encoding of 32 frequent values yields an average reduction of 30% (with on-chip data cache) and
49% (without on-chip data cache) in data bus switching activity for SPEC95 and mediabench
programs. Moreover the reduction in switching achieved by FV encoding is 2 to 4 times the
reduction achieved by the bus-invert coding scheme and 1.5 to 3 times the reduction achieved by
the adaptive method. Additional details can be found in [12].

2.4 Data Compression Transformations for Dynamically Allocated Data Structures

6

We introduce a class of transformations which modify the representation of dynamic data
structures used in programs with the objective of compressing their sizes. We have developed
the common-prefix and narrow-data transformations that respectively compress a 32 bit address
pointer and a 32 bit integer field into 15 bit entities. A pair of fields which have been compressed
by the above compression transformations are packed together into a single 32 bit word. The
above transformations are designed to apply to data structures that are partially compressible,
that is, they compress portions of data structures to which transformations apply and provide a
mechanism to handle the data that is not compressible. The accesses to compressed data are
efficiently implemented by designing data compression extensions (DCX) to the processor's
instruction set. We have observed average reductions in heap allocated storage of 25\% and
average reductions in execution time and power consumption of 30\%. If DCX support is not
provided the reductions in execution times fall from 30% to 12.5%. Additional details of this
technique can be found in [11].

3. Superscalar Processors

3.1 Dynamic Instruction Issue Mechanism

While the central window implementation in a superscalar processor is an effective approach to
waking up ready instructions, this implementation does not scale to large instruction window
sizes as those that are required by wide issue superscalars of the future. We have developed a
new wake-up algorithm that dynamically associates explicit wake-up lists with executing
instructions according to the dependences between instructions. Instead of repeatedly examining
a waiting instruction for wake-up till it can be issued, this algorithm identifies and considers for
wake-up a fresh subset of waiting instructions from the instruction window in each cycle thus
reducing the energy consumed by the issue logic. This subset of instructions are the ones
present in the wake-up lists of completing instructions. The direct wake-up microarchitecture
(DWMA) that we present is able to achieve approximately 80%, 75% and 63% of the
performance of a central window processor at high issue widths of 8, 16 and 32
respectively when an effective memory disambiguation mechanism is employed for load
speculation. Additional details of this technique can be found in [2].

3.2 Dynamic Memory Disambiguation

Memory dependence prediction allows out-of-order issue processors to achieve high degrees of
instruction level parallelism by issuing load instructions at the earliest time without causing a
significant number of memory order violations. We developed a simple mechanism which
incorporates multiple speculation levels within the processor and classifies the load and the store
instructions at run time to the appropriate speculation level. Each speculation level is termed as
a color and the sets of load and store instructions are called color sets. We show how this
mechanism can be incorporated into the issue logic of a conventional superscalar processor and
show that this simple mechanism can provide similar performance to that of more costly
schemes resulting in reduced hardware complexity and cost. The performance of the technique
was evaluated with respect to the store set algorithm. At very small table sizes, the color set
approach provides up to 21% better performance than the store set algorithm for floating point

7

Spec-95 benchmarks and up to 18% better performance for integer benchmarks using harmonic
means. Additional details of this technique can be found in [1].

3.3 Load-Store Reuse

We carried out experimental studies that show that even programs compiled using optimizing
compilers contain very high levels of load and store reuse opportunities. The presence of these
load and store reuse opportunities can be viewed as an opportunity for reducing on-chip cache
activity and hence the energy consumed by the cache. However, taking advantage of this
opportunity is a non-trivial task because a load and store reuse mechanism will itself consume
energy. To get an overall reduction in energy consumed we must save more energy in the cache
than is consumed by the reuse mechanism. Our experiments with an aggressive reuse
mechanism resulted in a net increase in energy used.

We carried out the design and evaluation of a reuse mechanism which was carefully tuned to
achieve two objectives: (i) capture and eliminate a large fraction of reusable load and store
instructions; and (ii) perform reuse using less energy than what is saved in the cache. A number
of strategies are used to minimize the activity in the reuse unit. For programs with high levels of
reuse we obtain IPC improvements of up to 55% and net cache energy savings of up to 47%.
Even more importantly, in programs where little reuse is found, the net increase in energy
consumed is less than 3%. In contrast to traditional filter cache designs which trade-off energy
reductions with higher execution times, our approach reduces both energy and execution time.
Additional details of load-store reuse techniques can be found in [4,5,6].

3.4 Functional Unit Management

We have developed a novel approach which combines compiler, instruction set, and
microarchitecture support to turn off functional units that are idle for long periods of time for
reducing static power dissipation by idle functional units using power gating. The compiler
identifies program regions in which functional units are expected to be idle and communicates
this information to the hardware by issuing directives for turning units off at entry points of idle
regions and directives for turning them back on at exits from such regions. The microarchitecture
is designed to treat the compiler directives as hints ignoring a pair of off and on directives if they
are too close together. The results of experiments show that some of the functional units can be
kept off for over 90% of the time at the cost of minimal performance degradation of under 1%.
Additional details of this technique can be found in [3].

4. Embedded Processors

4.1 Profile Guided Selection of ARM and Thumb Instructions

The ARM processor core is a leading processor design for the embedded domain. In the
embedded domain, both memory and energy are important concerns. For this reason the 32 bit
ARM processor also supports the 16 bit Thumb instruction set. For a given program, typically the
Thumb code is smaller than the ARM code. Therefore by using Thumb code the I-cache activity,

8

and hence the energy consumed by the I-cache, can be reduced. However, the limitations of the
Thumb instruction set, in comparison to the ARM instruction set, can often lead to generation of
poorer quality code. Thus, while Thumb code may be smaller than ARM code, it may perform
poorly and thus may not lead to overall energy savings. We performed a comparative evaluation
of ARM and Thumb code to establish the above claims and present analysis of Thumb
instruction set restrictions that lead to the loss of performance. We developed profile guided
algorithms for generating mixed ARM and Thumb code for application programs so that the
resulting code gives significant code size reductions without loss in performance. Our
experiments show that this approach is successful and in fact in some cases the mixed code
outperforms both ARM and Thumb code. Additional details of this technique can be found in [14].

4.2 Enhancing the Performance of 16 Bit Thumb Code Through Instruction Coalescing

The ARM processor core is a leading processor design for the embedded domain. In the
embedded domain, both memory and energy are important concerns. The 32 bit ARM processor
addresses these concerns by supporting the 16 bit Thumb instruction set. For a given program,
the Thumb code is typically 30% smaller than the ARM code and yields savings in instruction
cache energy. However, the limitations of the Thumb instruction set, in comparison to the ARM
instruction set, can often lead to generation of additional instructions. Thumb instruction counts
are observed to exceed ARM instruction counts by 9% to 41%.

This paper presents a novel approach that enables Thumb code to perform like ARM code. We
have observed that throughout Thumb code we can spot Thumb instruction pairs that are
equivalent to a single ARM instruction. Therefore we have developed enhancements to the Thumb
instruction set and the processor microarchitecture that allows a Thumb instruction pair to be
translated into a single ARM instruction at runtime. We enhance the Thumb instruction set by
incorporating Augmenting Instruction set eXtensions (AIX). Augmenting instructions are a new
class of instructions which are entirely handled in the decode stage of the processor, that is,
they do not travel through the remaining stages of the pipeline. A Thumb instruction pair that can
be combined into a single ARM instruction is replaced by an AIXThumb instruction pair by the
compiler. The AIX instruction is coalesced with the immediately following Thumb instruction to
generate a single ARM instruction during the decode stage of the processor where the
translation of Thumb instructions into ARM instructions takes place. The enhanced
microarchitecture ensures that coalescing does not introduce pipeline delays and therefore
coalescing results in reduction of both instruction counts and cycle counts. In our approach the
compiler is responsible for identifying Thumb instruction pairs that can be safely coalesced
because the safety of coalescing requires global analysis of the program and thus cannot be
carried out entirely by the hardware. The ARM instruction set supports predicated execution
while Thumb does not. Through the use of AIX instructions and coalescing hardware we are also
able to incorporate a highly effective implementation of predicated execution in 16 bit mode.

Our experiments show that instruction counts for Thumb code exceed that of ARM code by 9%
to 41%. However, instruction counts for AIXThumb code are lower than those for Thumb code by
upto 25%. Thus, the combination of AIX instructions and instruction coalescing enhances the
performance of 16 bit code considerably. Additional details of this technique can be found in [15].

9

4.3 Bit Section Instruction Set Extension of ARM

Programs that manipulate data at subword level, i.e. bit sections within a word, are common
place in the embedded domain. Examples of such applications include media processing as well
 as network processing codes. These applications spend significant amounts of time packing
and unpacking narrow width data into memory words. The execution time and memory overhead
of packing and unpacking operations can be greatly reduced by providing direct instruction set
support for manipulating bit sections. In this work we developed the Bit Section eXtension (BSX)
to the ARM instruction set. We selected the ARM processor for this research because it is one
of the most popular embedded processor which is also being used as the basis of building many
commercial network processing architectures. We present the design of BSX instructions and
their encoding into the ARM instruction set. We have incorporated the implementation of BSX
into the Simplescalar ARM simulator from Michigan. Results of experiments with programs from
various benchmark suites show that by using BSX instructions the total number of instructions
executed at runtime by many transformed functions are reduced by 4.26% to 27.27% and their
code sizes are reduced by 1.27% to 21.05%. Additional details of this technique can be found in
[16].

4.4 Bitwidth Aware Global Register Allocation

Multimedia and network processing applications make extensive use of subword data. Since
registers are capable of holding a full data word, when a subword variable is assigned a register,
only part of the register is used. New embedded processors have started supporting
instruction sets that allow direct referencing of bit sections within registers and therefore multiple
subword variables can be made to simultaneously reside in the same register without
hindering accesses to these variables. However, a new register allocation algorithm is needed
that is aware of the bitwidths of program variables and is capable of packing multiple subword
variables into a single register. This work develops one such algorithm.

The algorithm we propose has two key steps. First, a combination of forward and backward data
flow analyses are developed to determine the bitwidths of program variables throughout the
program. This analysis is required because the declared bitwidths of variables are often larger
than their true bitwidths and moreover the minimal bitwidths of a program variable can vary from
one program point to another. Second, a novel interference graph representation is
designed to enable support for a fast and highly accurate algorithm for packing of subword
variables into a single register. Packing is carried out by a node coalescing phase that precedes
the conventional graph coloring phase of register allocation. In contrast to
traditional node coalescing, packing coalesces a set of interfering nodes. Our experiments
show that our bitwidth aware register allocation algorithm reduces the register requirements
by 10% to 50% over a traditional register allocation algorithm that assigns separate registers
to simultaneously live subword variables. Additional details of this technique can be found in [17].

4.5 Dual Memory Banks in Embedded Processors

Many modern embedded processors support partitioned memory banks (also called X-Y memory
 or dual bank memory) along with parallel load/store instructions to achieve code density and/or
performance. In order to effectively utilize the parallel load/store instructions,
the compiler must partition the values to be loaded or stored into X or Y bank. This work

10

develops a post-register allocation solution to merge the generated load/store instructions
into their parallel counter-parts. Simultaneously, our framework performs allocation of values to X
or Y memory banks.

We first remove as many load/stores and register-register moves through an excellent iterated
coalescing based register allocator by Appel and George. Our goal is then to maximally
parallelize the generated load/stores using a multi-pass approach with minimal growth in terms of
memory requirements. The first phase of our approach attempts the merger of load stores
without replication of values in memory. We model this problem in terms of a graph coloring
problem in which each value is colored X or Y. We then construct a Motion Scheduling Graph
(MSG) based on the range of motion for each load/store instruction. MSG reflects potential
instructions which could be merged. We propose a notion of pseudo-fixed boundaries so that the
load/store movement is minimally affected by register dependencies. We prove that the coloring
problem for MSG is NP-complete. We then propose a heuristic solution, which minimally
replicates load/stores on different control flow paths if necessary. Finally, the remaining
load/stores are tackled by register rematerialization and local conflicts are eliminated. Registers
are re-assigned to create motion ranges if opportunities are found for merger which are hindered
by local assignment of registers. We show that our framework results in parallelization of a large
number of load/stores on these emerging processors without much growth in data and code
segments. Additional details of this technique can be found in [13].

5. Infrastructure Development

In order to carry out the compiler work we made use of the gcc compiler, both for superscalar
and embedded research. The simulation infrastructure used in this work consisited of two
systems. For the work on frequent values and superscalar we made use of the FAST simulator
generation system. This system has been greatly enhanced as part of this project. In addition to
implementing all of the newly developed techniques, we also for the first time incorporated power
and energy estimation models into the system. For the work on embedded systems we started
with a port of Simplescalar to ARM. We extended it by implementing the Thumb instruction set
and we also modified it to make use of newlib which is the library of choice for embedded
systems.

6. Other Contributions

In addition to developing low power techniques and the infrastructure to carry out low power
research, this project has also made contributions in other ways. First, the work carried out
under this project has been widely disseminated through publications in high quality conferences
and journals [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]. Second, many students have actively
contributed this project at each of the participating institutions. Some of these students have
graduated and added to the much needed workforce in the area of low power computing. In
particular, Youtao Zhang and Jun Yang, who have authored some of the papers related to this
project, have completed their PhD dissertations.

11

References

1. S. Onder, ``Cost Effective Memory Dependence Prediction Using Speculation
Levels and Color Sets,'' The Eleventh International Conference on
Parallel Architectures and Compilation Techniques (PACT),
Charlottesville, Virginia, September 2002.

2. S. Onder and R. Gupta, ``Instruction Wake-up in Wide Issue
Superscalars,'' European Conference on Parallel Computing (Euro-Par),
LNCS 2150, Springer Verlag, pages 418-427, Manchester, UK, August 2001.

3. S. Rele, S. Pande, S. Onder, and R. Gupta, ``Optimizing Static Power
Dissipation by Functional Units in Superscalar Processors,''
International Conference on Compiler Construction (CC), LNCS 2304,
Springer Verlag, pages 261-275, Grenoble, France, April 2002.

4. S. Onder and R. Gupta, ``Load and Store Reuse Using Register File
Contents,'' ACM 15th International Conference on Supercomputing (ICS),
pages 289-302, Sorrento, Naples, Italy, June 2001.

5. J. Yang and R. Gupta, ``Energy-Efficient Load and Store Reuse,'' ACM/IEEE
International Symposium on Low Power Electronics and Design (ISLPED),
pages 72-75, Huntington, CA, August 2001.

6. J. Yang and R. Gupta, ``Load Redundancy Removal through Instruction
Reuse,'' International Conference on Parallel Processing (ICPP), pages
61-68, Toronto, Canada, August 2000.

7. J. Yang and R. Gupta, ``Frequent Value Locality and its Applications,''
ACM Transactions on Embedded Computing Systems (TECS), special inaugural
issue on memory systems, Vol. 1, No. 1, pages 79-105, 2002.

12

8. Y. Zhang, J. Yang, and R. Gupta, ``Frequent Value Locality and Value-
Centric Data Cache Design,'' ACM 9th International Conference on
Architectural Support for Programming Lanuguages and Operating Systems
(ASPLOS), pages 150-159, Cambridge, MA, November 2000.

9. J. Yang and R. Gupta, ``Energy Efficient Frequent Value Data Cache
Design,'' IEEE/ACM 35th International Symposium on Microarchitecture
(MICRO), Istanbul, Turkey, November 2002.

10. J. Yang, Y. Zhang and R. Gupta, ``Frequent Value Compression in Data
Caches,'' IEEE/ACM 33rd International Symposium on Microarchitecture
(MICRO), pages 258-265, Monterey, CA, December 2000.

11. Y. Zhang and R. Gupta, ``Data Compression Transformations for
Dynamically Allocated Data Structures,'' International Conference on
Compiler Construction (CC), LNCS 2304, Springer Verlag, pages 14-28,
Grenoble, France, April 2002.

12. J. Yang and R. Gupta, ``FV Encoding for Low-Power Data I/O,'' ACM/IEEE
International Symposium on Low Power Electronics and Design (ISLPED),
pages 84-87, Huntington, CA, August 2001.

13. X. Zhuang, S. Pande and J. Greenland, ``A Framework for Parallelizing
Load/Stores on Embedded Processors,'' 11th International ACM/IEEE
Conference on Parallel Architectures and Compilation Techniques (PACT),
pages 68-79, Charlottesville, Virginia, September 2002.

14. A. Krishnaswamy and R. Gupta, ``Profile Guided Selection of ARM and
Thumb Instructions,'' ACM SIGPLAN Joint Conference on Languages Compilers
and Tools for Embedded Systems & Software and Compilers for Embedded
Systems (LCTES/SCOPES), pages 55-63, Berlin, Germany, June 2002.

15. A. Krishnaswamy and R. Gupta, ``Mixed Width Instruction Sets,'' to
appear in special issue on code compression in Communications of the ACM
(CACM), August 2003.

16. B. Li and R. Gupta, ``Bit Section Instruction Set Extension of ARM for
Embedded Applications,'' International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (CASES), pages 69-78,
Grenoble, France, October 2002.

17. S. Tallam and R. Gupta, ``Bitwidth Aware Global Register Allocation,''
30th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pages 85-96, New Orleans, LA, January 2003.

13

DISTRIBUTION LIST

DTIC/OCP
8725 John J. Kingman Rd, Suite 0944
Ft Belvoir, VA 22060-6218 1 cy

AFRL/VSIL
Kirtland AFB, NM 87117-5776 1 cy

AFRL/VSIH
Kirtland AFB, NM 87117-5776 1 cy

The University of Arizona
Dept. of Compute Science
Gould-Simpson Bldg., Rm. 246
Tuscon, AZ 85721 1 cy

14

Official Record Copy
AFRL/VSSE/James Lyke 1 cy

